Cytoplasmic LEK1 is a regulator of microtubule function through its interaction with the LIS1 pathway.

نویسندگان

  • Victor Soukoulis
  • Samyukta Reddy
  • Ryan D Pooley
  • Yuanyi Feng
  • Christopher A Walsh
  • David M Bader
چکیده

LIS1 and nuclear distribution gene E (NudE) are partner proteins in a conserved pathway regulating the function of dynein and microtubules. Here, we present data that cytoplasmic LEK1 (cytLEK1), a large protein containing a spectrin repeat and multiple leucine zippers, is a component of this pathway through its direct interaction with NudE, as determined by a yeast two-hybrid screen. We identified the binding domains in each molecule, and coimmunoprecipitation and colocalization studies confirmed the specificity of the interaction between cytLEK1 and NudE. Confocal deconvolution analysis revealed that cytLEK1 exhibits colocalization with endogenous NudE and with the known NudE binding partners, LIS1 and dynein. By localizing the NudE-binding domain of cytLEK1 to a small domain within the molecule, we were able to disrupt cytLEK1 function by using a dominant negative approach in addition to LEK1 knockdown and, thus, examine the role of the cytLEK1-NudE interaction in cells. Consistent with a defect in the LIS1 pathway, disruption of cytLEK1 function resulted in alteration of microtubule organization and cellular shape. The microtubule network of cells became tightly focused around the nucleus and resulted in a rounded cell shape. Additionally, cells exhibited a severe inability to repolymerize their microtubule networks after nocodazole challenge. Taken together, our studies revealed that cytLEK1 is essential for cellular functions regulated by the LIS1 pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CytLEK1 is a regulator of plasma membrane recycling through its interaction with SNAP-25.

SNAP-25 is a component of the SNARE complex that is involved in membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between SNAP-25 and cytoplasmic Lek1 (cytLEK1), a protein previously demonstrated to associate with the microtubule network. The binding domains within each protein were defined by yeast two-hybrid, coimmunoprecipitation, and colocalizatio...

متن کامل

Interaction between LIS1 and PDE4, and its role in cytoplasmic dynein function.

LIS1, a WD40 repeat scaffold protein, interacts with components of the cytoplasmic dynein motor complex to regulate dynein-dependent cell motility. Here, we reveal that cAMP-specific phosphodiesterases (PDE4s) directly bind PAFAH1B1 (also known as LIS1). Dissociation of LIS1-dynein complexes is coupled with loss of dynein function, as determined in assays of both microtubule transport and direc...

متن کامل

NudC-like protein 2 regulates the LIS1/dynein pathway by stabilizing LIS1 with Hsp90.

The type I lissencephaly gene product LIS1, a key regulator of cytoplasmic dynein, is critical for cell proliferation, survival, and neuronal migration. However, little is known about the regulation of LIS1. Here, we identify a previously uncharacterized mammalian homolog of Aspergillus NudC, NudCL2 (NudC-like protein 2), as a regulator of LIS1. NudCL2 is localized to the centrosome in interpha...

متن کامل

LIS1 Regulates Osteoclast Formation and Function through Its Interactions with Dynein/Dynactin and Plekhm1

Microtubule organization and lysosomal secretion are both critical for the activation and function of osteoclasts, highly specialized polykaryons that are responsible for bone resorption and skeletal homeostasis. Here, we have identified a novel interaction between microtubule regulator LIS1 and Plekhm1, a lysosome-associated protein implicated in osteoclast secretion. Decreasing LIS1 expressio...

متن کامل

Regulation of cytoplasmic dynein ATPase by Lis1.

Mutations in Lis1 cause classical lissencephaly, a developmental brain abnormality characterized by defects in neuronal positioning. Over the last decade, a clear link has been forged between Lis1 and the microtubule motor cytoplasmic dynein. Substantial evidence indicates that Lis1 functions in a highly conserved pathway with dynein to regulate neuronal migration and other motile events. Yeast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 24  شماره 

صفحات  -

تاریخ انتشار 2005